GS6081

Gennum Products

Features

- Supports data rates from 270Mb/s to 5.94Gb/s
- SMPTE ST 424, SMPTE ST 292 and SMPTE ST 259 compliant
- Supports DVB-ASI at 270Mb/s
- Wide common-mode range input buffer
 - 100mV sensitivity
 - supports DC-coupling to industry-standard differential logic
 - on-chip 100Ω differential data input termination
- Input signal trace equalization
- Dual differential coaxial-cable-driving outputs
 - selectable slew rates
 - adjustable output swing from 500mV_{pp} to 1040mV_{pp}
 - independent disable controls for each output
- Robust signal presence function
- Excellent output eye quality
- Power supply operation at +3.3V or +2.5V
- 135mW power consumption (+2.5V supply)
- Operating temperature range: -40°C to +85°C
- Small footprint QFN package (4mm x 4mm)
 - new dual-output pin out
 - use the GS6080 for a single-output variant that is drop-in compatible to the GS2988
- Pb-free and RoHS compliant

Applications

 6G UHD-SDI, SMPTE ST 424, SMPTE ST 292 and SMPTE ST 259 coaxial cable serial digital interfaces

Description

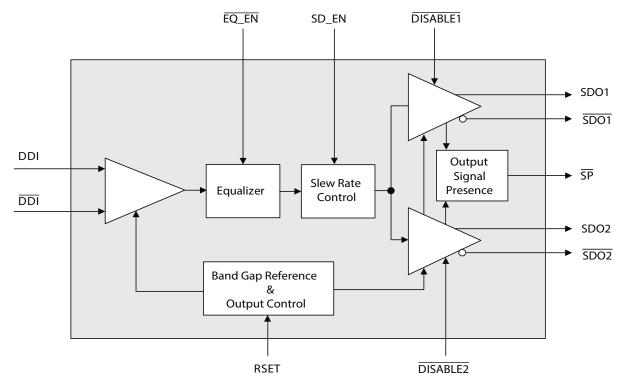
The GS6081 is a high-speed BiCMOS integrated circuit designed to drive one to four 75Ω coaxial cables.

The GS6081 may drive data rates up to 5.94Gb/s and provides two selectable slew rates in order to achieve compliance to SMPTE ST 424, SMPTE ST 292 and SMPTE ST 259.

The GS6081 accepts industry-standard differential input levels including LVPECL and CML.

Input trace equalization compensates for up to 10 inches of FR4 trace loss while in HD, 3G and UHD modes. This feature is enabled and disabled using the EQ_EN pin.

The DISABLET and DISABLE2 pins power-down the first and second output drivers respectively, leaving the serial data outputs in a high-impedance state. When applied simultaneously, the entire device is powered-down.


The GS6081 features adjustable output swing using an external bias resistor. The single-ended output swing is adjustable from 500mV_{DD} to 1040mV_{DD} .

An output signal presence function, the \overline{SP} pin, indicates whether an active signal is present at the output of the GS6081.

The GS6081 can be powered from either a +3.3V or a +2.5V supply. Power consumption is typically 135mW using a +2.5V power supply with one output enabled.

The GS6081 is Pb-free, and the encapsulation compound does not contain halogenated flame retardant.

This component and all homogeneous subcomponents are RoHS compliant.

GS6081 Functional Block Diagram

Revision History

Version	ECO	PCN	Date	Changes and/or Modifications
4	020838	_	July 2014	Updated max power and current values in Table 2-2.
3	016276	_	November 2013	Corrected pin order in Table 1-1 to match proper pin numbering arrangement
2	013845	_	July 2013	Updated from Draft Data Sheet to Final Data Sheet.
1	012266	_	June 2013	Updated Table 2-3: AC Electrical Characteristics. Changed the product name to GS6081 (and the DOC ID to PDS-060046) to reflect the production-ready status of the device.
0	010383	_	December 2012	New document.

Contents

Features	1
Applications	1
Description	1
Revision History	2
1. Pin Out	4
1.1 Pin Assignment	4
1.2 Pin Descriptions	4
2. Electrical Characteristics	6
2.1 Absolute Maximum Ratings	6
2.2 DC Electrical Characteristics	6
2.3 AC Electrical Characteristics	7
3. Input/Output Circuits	9
4. Detailed Description	10
4.1 Serial Data Input	10
4.2 Input Trace-equalization	10
4.3 Serial Data Output	10
4.3.1 Slew Rate Selection (Rise/Fall Time Requirement)	11
4.4 Output Disable	11
4.5 Signal Presence Indicator (SP)	11
4.6 Output Amplitude (RSET)	
4.7 Output Return Loss Measurement	13
5. Application Information	14
5.1 PCB Layout	14
5.2 Typical Application Circuit	
6. Package & Ordering Information	15
6.1 Package Dimensions	15
6.2 Recommended PCB Footprint	16
6.3 Packaging Data	16
6.4 Solder Reflow Profiles	17
6.5 Marking Diagram	17
6.6 Ordering Information	18

1. Pin Out

1.1 Pin Assignment

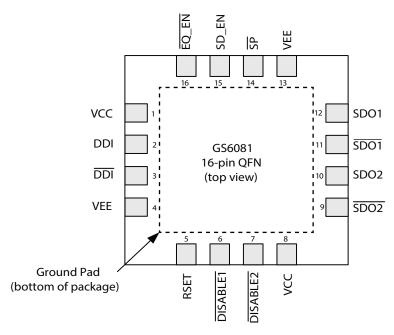


Figure 1-1: 16-Pin QFN

1.2 Pin Descriptions

Table 1-1: Pin Descriptions

Pin Number	Name	Туре	Description
1,8	VCC	Power	Most positive power supply connection for the input buffer and core. Connect to $+3.3V$ or $+2.5V$.
2, 3	DDI, DDI	Input	Serial data differential input. See Section 4.1 for details.
4, 13	VEE	Power	Most negative power supply connection for the input buffer and core. Connect to ground.
5	RSET	Input	External output amplitude control resistor connection. See Section 4.6 for details.

Table 1-1: Pin Descriptions (Continued)

Pin Number	Name	Туре	Description
6*	DISABLE1	Input	Output Disable 1 (control signal input). When set LOW, the first serial data output is disabled (powered-down) and the SDO1/SDO1 pins are set to high-impedance. When set HIGH, the SDO1/SDO1 pins will output a serial data signal. See Section 4.4 for details.
-			This pin has an internal pull-up.
7*	DISABLE2	Input	Output Disable 2 (control signal input). When set LOW, the second serial data output is disabled (powered-down) and the SDO2/SDO2 pins are set to high-impedance. When set HIGH, the SDO2/SDO2 pins will output a serial data signal. See Section 4.4 for details. This pin has an internal pull-down.
9,10	SDO2, SDO2	Output	Serial data differential output of second output buffer.
11,12	SDO1, SDO1	Output	Serial data differential output of first output buffer.
14	SP	Output	Signal Presence (status signal output). Indicates presence of a signal at the pre-driver to the device's output stage. See Section 4.5 for details.
15	SD_EN	Input	SD Slew Rate Enable (control signal input). Sets the slew rate for SDO/SDO. See Section 4.3.1 for details. This pin has an internal pull-up.
16	EQ_EN	Input	Equalizer Enable (control signal input). See Section 4.2 for details. This pin has an internal pull-up. Note: this pin must be pulled HIGH or left floating for operation in SD mode.
_	Center Pad	Power	Connect to most negative power supply plane following the recommendations in Recommended PCB Footprint on page 16.

^{*}Note: When pins 6 and 7 are driven LOW together (or similarly when pin 6 is driven LOW while pin 7 is left floating), the entire device is powered-down. In this state, minimum power consumption occurs.

2. Electrical Characteristics

2.1 Absolute Maximum Ratings

Table 2-1: Absolute Maximum Ratings

Parameter	Value
Supply Voltage	-0.5V to +3.6 V _{DC}
Input ESD Voltage	2.5kV
Storage Temperature Range (T _s)	-50°C to +125°C
Input Voltage Range (any input)	-0.3 to (V _{CC} +0.3)V
Operating Temperature Range	-40°C to +85°C
Solder Reflow Temperature	260°C

Note: Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation outside of the ranges shown in Table 2-1 is not implied.

2.2 DC Electrical Characteristics

Table 2-2: DC Electrical Characteristics

 V_{CC} = +3.3V ±5% or +2.5V ±5%; T_A = -40°C to +85°C, unless otherwise shown

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Notes
Supply Voltage	V _{CC}	3.3V Typical	3.135	3.3	3.465	V	_
Supply voltage	v cc	2.5V Typical	2.375	2.5	2.625	V	_
		SDO1/SDO1 or SDO2/SDO2 enabled	_	135	160	mW	1
Power Consumption (+2.5V)	P_{D}	SDO1/SDO1 and SDO2/SDO2 enabled	_	205	242	mW	1
(,		SDO1/SDO1 and SDO2/SDO2 disabled (Power-Down Mode)	_	3	5	mW	1
	P _D	SDO1/SDO1 enabled, SDO2/SDO2 disabled	_	185	222	mW	1
Power Consumption (+3.3V)		SDO1/SDO1 and SDO2/SDO2 enabled	_	284	340	mW	1
		SDO1/SDO1 and SDO2/SDO2 disabled (Power-Down Mode)	_	4	6	mW	1

Table 2-2: DC Electrical Characteristics (Continued)

 V_{CC} = +3.3V ±5% or +2.5V ±5%; T_A = -40°C to +85°C, unless otherwise shown

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Notes
		SDO1/SDO1 or SDO2/SDO2 enabled	_	54	61	mA	1
Supply Current (+2.5V)	I _S	SDO1/SDO1 and SDO2/SDO2 enabled	_	82	92	mA	1
(12.34)		SDO1/SDO1 and SDO2/SDO2 disabled (Power-Down Mode)	_	1	1.8	mA	1
		SDO1/SDO1 or SDO2/SDO2 enabled	_	56	64	mA	1
Supply Current (+3.3V)	I _S	SDO1/SDO1 and SDO2/SDO2 enabled	_	86	98	mA	1
(1301)		SDO1/SDO1 and SDO2/SDO2 disabled (Power-Down Mode)	_	1	1.8	mA	1
Output Voltage	V _{CMOUT}	Common mode	_	V _{CC} - V _{OUT}	_	V	_
Input Voltage	V _{CMIN}	Common mode	$1.4 + \Delta V_{DDI}/2$	_	V_{CC} - $\Delta V_{DDI}/2$	V	_
SD_EN, DISABLE ,	V _{IH}	I _{IH} <= 150μA	1.7	_	_	V	_
EQ_EN Input	V _{IL}	I _{IL} <= 150μΑ	_	_	0.4	V	_
SP Drive Strength	_	_	2	_	_	mA	_

Notes:

2.3 AC Electrical Characteristics

Table 2-3: AC Electrical Characteristics

 V_{CC} = +3.3V ±5% or +2.5V ±5%; T_A = -40°C to +85°C, unless otherwise shown

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Notes
Serial input data rate	DR _{SDO}	_	270	_	5940	Mb/s	1
Additive jitter	_	5.94Gb/s	_	15	_	ps _{pp}	2, 8
	_	2.97Gb/s	_	10	_	ps _{pp}	2
		1.485Gb/s	_	10	_	ps _{pp}	2
		270Mb/s	_	30	_	ps _{pp}	2

^{1.} Power consumed in GS6081 only. Termination resistors draw extra current.

Table 2-3: AC Electrical Characteristics (Continued)

 V_{CC} = +3.3V ±5% or +2.5V ±5%; T_A = -40°C to +85°C, unless otherwise shown

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Notes
	t _r , t _f	5.94Gb/s	_	66	_	ps	3, 8
Rise/Fall time	t _r , t _f	SD_EN=0	_	_	135	ps	3
	t _r , t _f	SD_EN=1	400	_	800	ps	3
Mismatch in rise/fall time	$\triangle t_{rr} \triangle t_{f}$	HD/3G/UHD modes	_	_	35	ps	8
	_	SD_EN=0, 5.94Gb/s	_	18	_	ps	4, 5, 8
Duty cycle distortion	_	SD_EN=0, 2.97Gb/s	_	_	14	ps	4, 5
Duty cycle distortion	_	SD_EN=0, 1.485Gb/s	_	_	20	ps	4, 5
	_	SD_EN=1	_	_	50	ps	4, 5
Overshoot	_	SD_EN=0,	_	_	10	%	4
Output Return Loss	ORL	5 MHz – 1.485GHz	16	19	_	dB	6
		1.485GHz – 2.97GHz	12	15	_	dB	6
Output Voltage Swing	V_{OUT}	$R_{SET} = 750\Omega$	750	800	850	${\rm mV_{pp}}$	4
		Guaranteed functional.	100	_	2200	${\rm mV_{ppd}}$	_
Input Voltage Swing	$\triangle V_{DDI}$	Guaranteed to meet all published specifications.	250		2200	${\sf mV}_{\sf ppd}$	_
Output Disable Delay	_	Any output enabled to all outputs disabled	_	_	80	ns	_
Output Enable Delay	_	All outputs disabled to any output enabled.	_	_	4	μs	_
	_	One output enabled to both outputs enabled.	_	_	500	ns	7

Notes:

- 1. The input coupling capacitor must be set accordingly for lower data rates.
- 2. Turning on input trace equalization will reduce jitter in most applications.
- 3. Rise/Fall time measured between 20% and 80% applies to $800 mV_{pp}$ output swing only.
- 4. Single-ended into a 75Ω external load.
- 5. Calculated as the actual positive bit-width compared to the expected positive bit-width using a 1010 pattern.
- 6. ORL depends on board design. The GS6081 achieves this specification on Semtech's evaluation boards.
- 7. This Output Enable Delay applies only to the newly enabled output. The output that is already enabled is not impacted in this case.
- 8. Results based on Validation Data using recommended Application Circuit.

3. Input/Output Circuits

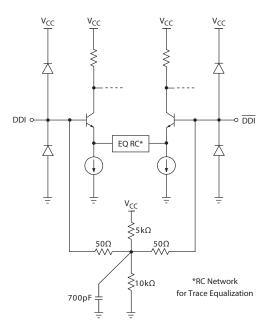


Figure 3-1: Differential Input Stage (DDI/DDI)

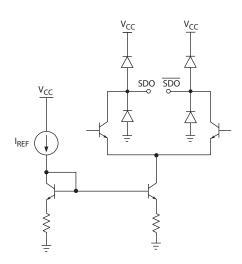


Figure 3-2: Differential Output Stage (SDO1/SDO1, SDO2/SDO2)

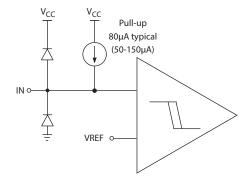


Figure 3-3: Control Input (DISABLE1, SD_EN, EQ_EN)

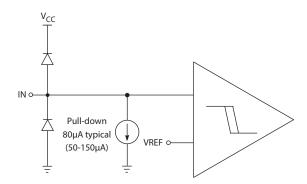


Figure 3-4: Control Input (DISABLE2)

4. Detailed Description

4.1 Serial Data Input

The GS6081 features a differential input buffer with on-chip 100Ω differential termination.

The serial data input signal is connected to the DDI and DDI input pins of the device.

Input signals can be single-ended or differential, DC or AC-coupled.

The serial data input buffer is capable of operation with any binary coded signal that meets the input signal level requirements, in the range of 270Mb/s to 5.94Gb/s.

The input circuit is self-biasing to allow for simple AC or DC-coupling of input signals to the device.

4.2 Input Trace-equalization

The GS6081 features fixed trace-equalization to compensate for PCB trace dielectric losses.

Note: This feature is not available in SD mode, and therefore trace-equalization must be disabled when operating in this mode.

The trace-equalization has two settings, OFF and ON. ON invokes a typical 3dB gain value at 1.5GHz.

Table 4-1: Input Trace-Equalization

EQ_EN	Function
0	Typical 3dB Trace Equalization
1	Trace Equalization OFF
Floating	Trace Equalization OFF

4.3 Serial Data Output

The GS6081 features dual current-mode differential output drivers capable of driving up to 1040mV_{pp} single-ended into a 1m length of 75Ω cable terminated at both ends.

The output signal amplitude or is set using an external R_{SET} resistor.

The SDO1/SDO1 and SDO2/SDO2 pins of the device provide the serial data outputs.

4.3.1 Slew Rate Selection (Rise/Fall Time Requirement)

The GS6081 supports two user-selectable output slew rates.

Control of the slew rate is determined by the setting of the SD_EN input pin.

Table 4-2: Slew Rate Selection

SD_EN	Rise/Fall Time
0	UHD-SDI (5.94Gb/s), SMPTE ST 424 and SMPTE ST 292 compliant
1	SMPTE ST 259 compliant
Floating	SMPTE ST 259 compliant

4.4 Output Disable

The GS6081 supports an output disable function for each serial data differential output.

Control of this function is determined by the setting of the serial output disable $(\overline{DISABLE1})$ and $\overline{DISABLE2}$ control pins.

Setting this pin LOW, disable power to the current mode serial data output drivers.

Table 4-3: Output Disable

DISABLE1	DISABLE2	SDO1/SDO1	SDO2/SDO2
0	0 or Floating	All Chip Po	ower Down
0	1	High-Impedance	Operational
1 or Floating	0 or Floating	Operational	High-Impedance
1 or Floating	1	Operational	Operational

When DISABLE1 and DISABLE2 are driven LOW simultaneously, the entire device is powered down, and the power consumption is minimized.

4.5 Signal Presence Indicator (SP)

The GS6081 supports a signal presence indicator function.

The signal presence pin $\overline{(SP)}$ is an active-low output that indicates a signal has been detected at the pre-driver output.

The signal presence function measures signal-edge energy to indicate that the pre-driver to the serial data outputs is toggling.

Table 4-4: Signal Presence Indicator

Pre-Driver Output	SP Pin
Signal present	0
No signal present	1

4.6 Output Amplitude (RSET)

The output amplitude of the GS6081 can be adjusted by changing the value of the R_{SET} resistor as shown in Figure 4-1. For an 800mV_{pp} output with a nominal $\pm 7\%$ tolerance, a value of 750 Ω is required. A ±1% SMT resistor should be used.

The R_{SET} resistor is part of an internal DC feedback loop in the GS6081. The resistor should be placed as close as possible to the RSET pin, and connected directly to the V_{CC} plane (traces/wires may cause instability).

Note: Care should be taken when considering layout of the R_{SFT} resistor. Please refer to Section 5.1 for more details.

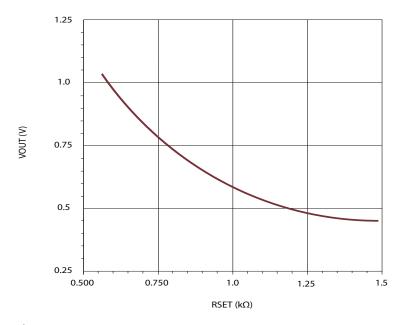


Figure 4-1: V_{OUT} vs. R_{SET}

In order to determine the best starting value for R_{SET}, the following formula should be used:

Rset = 8*(Rtrm/VoutppSE)

PDS-060046

Where **VoutppSE** is in Volts, and both resistances are in Ω .

July 2014

Rtrm is the value of the termination resistors, which should be equal to the characteristic impedance of the cable, and is typically 75 Ω .

The cable must be short (≤ 1 m), and terminated at both ends for the formula to be valid.

Example: For a 75 Ω cable, Rtrm = 75 Ω (at both ends), VoutppSE = 800mV_{pp}

Rset = $8*(75/0.8) = 750\Omega$

This formula is not valid for long, unterminated, or improperly terminated cables.

This formula should be considered as a starting point, and actual swing values may vary based on layout.

Table 4-5: Typical R_{SET} Values

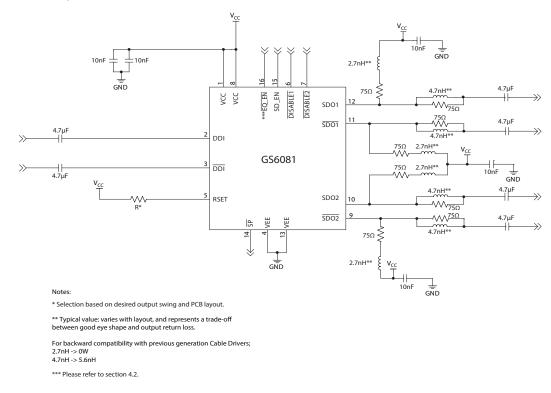
Output Swing (mV _{pp})	$R_{SET}(\Omega)$
1040	576
800	750
500	1210

4.7 Output Return Loss Measurement

The GS6081 has a feature designed to facilitate reliable output return loss (ORL) measurement while the device is still powered. The device can be put into a BALANCE mode which prevents the outputs from toggling while the device is powered on, allowing the ORL to be measured while the device is still powered.

When $\overline{EQ_EN}$ is LOW while SD_EN is HIGH, the device goes into BALANCE mode. This mode is used during ORL measurement, disabling the AC signal path of the device without powering it down. When in BALANCE mode, the device produces equal pull-down currents in both differential shoulders of both serial data differential outputs, effectively stopping all outputs at the output common mode voltage level. Semtech recommends using BALANCE mode when measuring ORL with +2.5V termination voltage.

5. Application Information


5.1 PCB Layout

Special attention must be paid to component layout when designing serial digital interfaces for HDTV.

An FR-4 dielectric can be used, however, controlled impedance transmission lines are required for PCB traces longer than approximately 1cm. Note the following PCB artwork features used to optimize performance:

- The PCB trace width for HD rate signals is closely matched to SMT component width to minimize reflections due to changes in trace impedance
- The PCB ground plane is removed under the GS6081 output components to minimize parasitic capacitance (**Note:** care should be taken, as removing too much of the plane will make the system susceptible to EMI)
- The PCB ground plane is removed under the GS6081 RSET pin and resistor to minimize parasitic capacitance. The R_{SET} resistor should be directly connected to the VCC plane
- Input and output BNC connectors are surface mounted in-line to eliminate a transmission line stub caused by a BNC mounting via high-speed traces
- High-speed traces are round-curved (rather than 45° or 90° angles) to minimize impedance variations due to change of PCB trace width

5.2 Typical Application Circuit

Figure 5-1: Typical Application Circuit

6. Package & Ordering Information

6.1 Package Dimensions

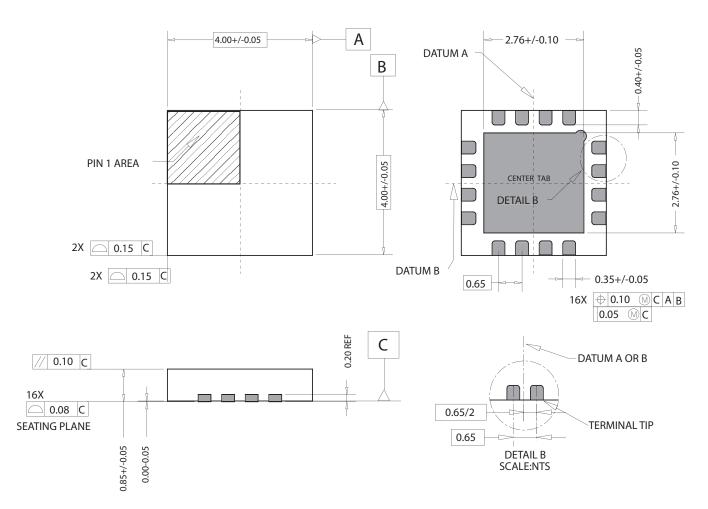
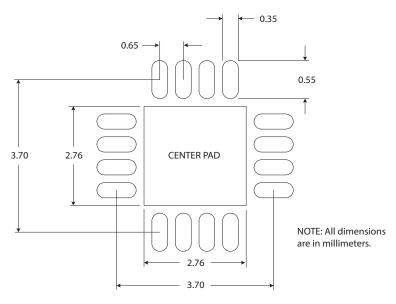



Figure 6-1: Package Dimensions

6.2 Recommended PCB Footprint

Figure 6-2: Recommended PCB Footprint

The Center Pad should be connected to the most negative power supply plane (VEE) by a minimum of 5 vias.

Note: Suggested dimensions only. Final dimensions should conform to customer design rules and process optimizations.

6.3 Packaging Data

Table 6-1: Packaging Data

Parameter	Value
Package type / dimensions / pad pitch	16-pin QFN / 4mm x 4mm / 0.65mm
Package Drawing Reference	JEDEC M0220
Moisture Sensitivity Level	1
Junction to Case Thermal Resistance, θ_{j-c}	31.0°C/W
Junction to Air Thermal Resistance, $\boldsymbol{\theta}_{j\text{-}a}$ (at zero airflow)	43.8°C/W
Psi, Ψ	11.0°C/W
Pb-free and RoHS compliant, Halogen-free	Yes

6.4 Solder Reflow Profiles

The device is manufactured with Matte-Sn terminations and is compatible with both standard eutectic and Pb-free solder reflow profiles. MSL qualification was performed using the maximum Pb-free reflow profile shown in Figure 6-3.

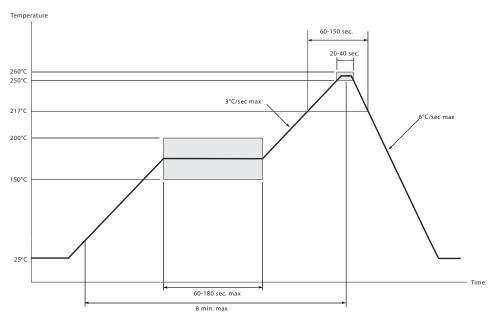
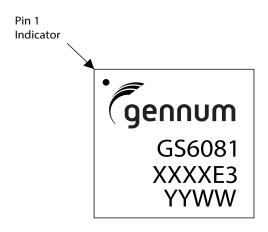



Figure 6-3: Maximum Pb-free Solder Reflow Profile

6.5 Marking Diagram

July 2014

Figure 6-4: Marking Diagram

PDS-060046

XXXX - Last 4 digits (excluding decimal) of SAP Batch Assembly (FIN) as listed on Packing Slip.
E3 - Pb-free & Green indicator
YYWW - Date Code

6.6 Ordering Information

Table 6-2: Ordering Information

	Part Number	Package	Temperature Range
GS6081	GS6081-INE3	16-pin QFN	-40°C to 85°C
GS6081	GS6081-INTE3	16-pin QFN 250pc Reel	-40°C to 85°C

DOCUMENT IDENTIFICATION FINAL DATA SHEET

Information relating to this product and the application or design described herein is believed to be reliable, however such information is provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or design described herein. Semtech reserves the right to make changes to the product or this document at any time without notice.

CAUTION

ELECTROSTATIC SENSITIVE DEVICES

DO NOT OPEN PACKAGES OR HANDLE EXCEPT AT A STATIC-FREE WORKSTATION

© Semtech 2012

All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. Semtech assumes no responsibility or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified range.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contact Information

Semtech Corporation 200 Flynn Road, Camarillo, CA 93012 Phone: (805) 498-2111, Fax: (805) 498-3804 www.semtech.com